Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.117
Filtrar
1.
Theory Biosci ; 142(3): 235-258, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37436586

RESUMO

In this work, we analyse the dynamics of a five-dimensional hepatitis C virus infection mathematical model including the spatial mobility of hepatitis C virus particles, the transmission of hepatitis C virus infection by mitosis process of infected hepatocytes with logistic growth, time delays, antibody response and cytotoxic T lymphocyte (CTL) immune response with general incidence functions for both modes of infection transmission, namely virus-to-cell as well as cell-to-cell. Firstly, we prove rigorously the existence, the uniqueness, the positivity and the boundedness of the solution of the initial value and boundary problem associated with the new constructed model. Secondly, we found that the basic reproductive number is the sum of the basic reproduction number determined by cell-free virus infection, determined by cell-to-cell infection and determined by proliferation of infected cells. It is proved the existence of five spatially homogeneous equilibria known as infection-free, immune-free, antibody response, CTL response and antibody and CTL responses. By using the linearization methods, the local stability of the latter is established under some rigorous conditions. Finally, we proved the existence of periodic solutions by highlighting the occurrence of a Hopf bifurcation for a certain threshold value of one delay.


Assuntos
Hepatite C , Modelos Imunológicos , Humanos , Incidência , Simulação por Computador , Proliferação de Células , Imunidade
3.
Artigo em Inglês | MEDLINE | ID: mdl-36494028

RESUMO

IL-6, IL-17, IL-23 and IL-1ß are the crucial cytokines controlling inflammatory and immune response during L. major infection. During cutaneous leishmaniasis, an important T helper cell type CD4+ Th17 subset plays a deterministic role in lesion formation through channelling infected macrophages and production of IL-1ß, IL-6, IL-23 and IFN-γ. Ceramide derived sphingosine precursors may assist in pro-inflammatory cytokine response. However, the role of these metabolites in inflammation with pleiotropic pro-inflammatory cytokines in L. major infection is unknown. The present study indicates IL-6/IL-17/IL-23 and SPHK1-S1P-S1PRs signaling axes with the overexpression of SATB1 aiding in disease progression. Targeting SATB1 might modulate the secretion of pro-inflammatory cytokines and abnormal immune functioning, thereby killing the intracellular parasite. Systems immunological methods assisted in a step towards identifying the key to the mystery of crucial components and serving as an approach for therapeutic intervention in L. major infection.


Assuntos
Interleucina-6 , Proteínas de Ligação à Região de Interação com a Matriz , Esfingolipídeos , Modelos Imunológicos , Interleucina-17 , Citocinas/metabolismo , Interleucina-23
4.
Curr Oncol ; 29(11): 7994-8018, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36354693

RESUMO

BACKGROUND: Cervical cancer (CC) is a common cancer in female, which is associated with problems like poor prognosis. Circular RNA (circRNA) is a kind of competing endogenous RNA (ceRNA) that has an important role in regulating microRNA (miRNA) in many cancers. The regulatory mechanisms of CC immune microenvironment and the transcriptome level remain to be fully explored. METHODS: In this study, we constructed the ceRNA network through the interaction data and expression matrix of circRNA, miRNA and mRNA. Meanwhile, based on the gene expression matrix, CIBERSORT algorithm was used to reveal contents of tumor-infiltrating immune cells (TIICs). Then, we screened prognostic markers based on ceRNA network and immune infiltration and constructed two nomograms. In order to find immunological differences between the high- and low-risk CC samples, we examined multiple immune checkpoints and predicted the effect of PD-L1 ICI immunotherapy. In addition, the sensitive therapeutics for high-risk patients were screened, and the potential agents with anti-CC activity were predicted by Connective Map (CMap). RESULTS: We mapped a ceRNA network including 5 circRNAs, 17 miRNAs and 129 mRNAs. From the mRNA nodes of the network six genes and two kind of cells were identified as prognostic makers for CC. Among them, there was a significant positive correlation between CD8+ T cells and SNX10 gene. The results of TIDE and single sample GSEA (ssGSEA) showed that T cells CD8 do play a key role in inhibiting tumor progression. Further, our study screened 24 drugs that were more sensitive to high-risk CC patients and several potential therapeutic agents for reference. CONCLUSIONS: Our study identified several circRNA-miRNA-mRNA regulatory axes and six prognostic genes based on the ceRNA network. In addition, through TIIC, survival analysis and a series of immunological analyses, T cells were proved to be good prognostic markers, besides play an important role in the immune process. Finally, we screened 24 potentially more effective drugs and multiple potential drug compounds for high- and low-risk patients.


Assuntos
MicroRNAs , Neoplasias do Colo do Útero , Humanos , Feminino , RNA Circular/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Redes Reguladoras de Genes , Modelos Imunológicos , Perfilação da Expressão Gênica/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico , Microambiente Tumoral , Nexinas de Classificação/genética
5.
Scand J Immunol ; 96(4): e13209, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36239215

RESUMO

The self-non-self model and the danger model are designed to understand how an immune response is induced. These models are not meant to predict if an immune response may succeed or fail in destroying/controlling its target. However, these immunological models rely on either self-antigens or self-dendritic cells for understanding of central tolerance, which have been discussed by Fuchs and Matzinger in response to Al-Yassin. In an attempt to address some questions that these models are facing when it comes to understanding central tolerance, I propose that the goal of negative selection in the thymus is to eliminate defective T cells but not self-reactive T cells. Therefore, any escape from negative selection could increase lymphopenia because of the depletion of defective naïve T cells outside the thymus, as seen in the elderly.


Assuntos
Tolerância Central , Linfócitos T , Idoso , Autoantígenos , Objetivos , Humanos , Tolerância Imunológica , Modelos Imunológicos , Timo
6.
Science ; 376(6595): 880-884, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35587980

RESUMO

Systems immunology lacks a framework with which to derive theoretical understanding from high-dimensional datasets. We combined a robotic platform with machine learning to experimentally measure and theoretically model CD8+ T cell activation. High-dimensional cytokine dynamics could be compressed onto a low-dimensional latent space in an antigen-specific manner (so-called "antigen encoding"). We used antigen encoding to model and reconstruct patterns of T cell immune activation. The model delineated six classes of antigens eliciting distinct T cell responses. We generalized antigen encoding to multiple immune settings, including drug perturbations and activation of chimeric antigen receptor T cells. Such universal antigen encoding for T cell activation may enable further modeling of immune responses and their rational manipulation to optimize immunotherapies.


Assuntos
Antígenos , Linfócitos T CD8-Positivos , Citocinas , Ativação Linfocitária , Modelos Imunológicos , Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Imunoterapia , Aprendizado de Máquina , Receptores de Antígenos de Linfócitos T/metabolismo
7.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269795

RESUMO

COVID-19, resulting from the SARS-CoV-2 virus, is a major pandemic that the world is fighting. SARS-CoV-2 primarily causes lung infection by attaching to the ACE2 receptor on the alveolar epithelial cells. However, the ACE2 receptor is also present in intestinal epithelial cells, suggesting a link between nutrition, virulence and clinical outcomes of COVID-19. Respiratory viral infections perturb the gut microbiota. The gut microbiota is shaped by our diet; therefore, a healthy gut is important for optimal metabolism, immunology and protection of the host. Malnutrition causes diverse changes in the immune system by repressing immune responses and enhancing viral vulnerability. Thus, improving gut health with a high-quality, nutrient-filled diet will improve immunity against infections and diseases. This review emphasizes the significance of dietary choices and its subsequent effects on the immune system, which may potentially impact SARS-CoV-2 vulnerability.


Assuntos
COVID-19/imunologia , Comportamento Alimentar , Sistema Imunitário/imunologia , Desnutrição/imunologia , SARS-CoV-2/imunologia , COVID-19/epidemiologia , COVID-19/virologia , Microbioma Gastrointestinal/imunologia , Nível de Saúde , Humanos , Modelos Imunológicos , Estado Nutricional , Pandemias , SARS-CoV-2/patogenicidade , Virulência/imunologia
8.
Cell Mol Life Sci ; 79(3): 191, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35292881

RESUMO

Immune checkpoint blockade (ICB) therapies have achieved remarkable clinical responses in patients with many different types of cancer; however, most patients who receive ICB monotherapy fail to achieve long-term responses, and some tumors become immunotherapy-resistant and even hyperprogressive. Type I interferons (IFNs) have been demonstrated to inhibit tumor growth directly and indirectly by acting upon tumor and immune cells, respectively. Furthermore, accumulating evidence indicates that endo- and exogenously enhancing type I IFNs have a synergistic effect on anti-tumor immunity. Therefore, clinical trials studying new treatment strategies that combine type I IFN inducers with ICB are currently in progress. Here, we review the cellular sources of type I IFNs and their roles in the immune regulation of the tumor microenvironment. In addition, we highlight immunotherapies based on type I IFNs and combination therapy between type I IFN inducers and ICBs.


Assuntos
Imunoterapia/métodos , Interferon Tipo I/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Animais , Fibroblastos Associados a Câncer/imunologia , Terapia Combinada , Células Dendríticas/imunologia , Células Endoteliais/imunologia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Interferon Tipo I/biossíntese , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Macrófagos/imunologia , Camundongos , Modelos Imunológicos , Células Supressoras Mieloides/imunologia , Neutrófilos/imunologia , Terapia Viral Oncolítica , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Receptores Toll-Like/agonistas , Microambiente Tumoral/imunologia
9.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35177475

RESUMO

In order to target threatening pathogens, the adaptive immune system performs a continuous reorganization of its lymphocyte repertoire. Following an immune challenge, the B cell repertoire can evolve cells of increased specificity for the encountered strain. This process of affinity maturation generates a memory pool whose diversity and size remain difficult to predict. We assume that the immune system follows a strategy that maximizes the long-term immune coverage and minimizes the short-term metabolic costs associated with affinity maturation. This strategy is defined as an optimal decision process on a finite dimensional phenotypic space, where a preexisting population of cells is sequentially challenged with a neutrally evolving strain. We show that the low specificity and high diversity of memory B cells-a key experimental result-can be explained as a strategy to protect against pathogens that evolve fast enough to escape highly potent but narrow memory. This plasticity of the repertoire drives the emergence of distinct regimes for the size and diversity of the memory pool, depending on the density of de novo responding cells and on the mutation rate of the strain. The model predicts power-law distributions of clonotype sizes observed in data and rationalizes antigenic imprinting as a strategy to minimize metabolic costs while keeping good immune protection against future strains.


Assuntos
Linfócitos B/metabolismo , Imunidade Humoral/imunologia , Antígenos , Linfócitos B/imunologia , Humanos , Imunidade Humoral/fisiologia , Modelos Imunológicos
10.
Sci Rep ; 12(1): 2594, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173180

RESUMO

Complex glycans decorate viral surface proteins and play a critical role in virus-host interactions. Viral surface glycans shield vulnerable protein epitopes from host immunity yet can also present distinct "glycoepitopes" that can be targeted by host antibodies such as the potent anti-HIV antibody 2G12 that binds high-mannose glycans on gp120. Two recent publications demonstrate 2G12 binding to high mannose glycans on SARS-CoV-2 and select Influenza A (Flu) H3N2 viruses. Previously, our lab observed 2G12 binding and functional inhibition of a range of Flu viruses that include H3N2 and H1N1 lineages. In this manuscript, we present these data alongside structural analyses to offer an expanded picture of 2G12-Flu interactions. Further, based on the remarkable breadth of 2G12 N-glycan recognition and the structural factors promoting glycoprotein oligomannosylation, we hypothesize that 2G12 glycoepitopes can be defined from protein structure alone according to N-glycan site topology. We develop a model describing 2G12 glycoepitopes based on N-glycan site topology, and apply the model to identify viruses within the Protein Data Bank presenting putative 2G12 glycoepitopes for 2G12 repurposing toward analytical, diagnostic, and therapeutic applications.


Assuntos
Anticorpos Monoclonais/metabolismo , Anticorpos Amplamente Neutralizantes/metabolismo , Anticorpos Anti-HIV/metabolismo , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Modelos Imunológicos , SARS-CoV-2/imunologia , Animais , Cães , Reposicionamento de Medicamentos , Epitopos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H3N2/metabolismo , Células Madin Darby de Rim Canino , Terapia de Alvo Molecular , Testes de Neutralização , Polissacarídeos/metabolismo
11.
Sci Rep ; 12(1): 2640, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173229

RESUMO

Currently, several western countries have more than half of their population fully vaccinated against COVID-19. At the same time, some of them are experiencing a fourth or even a fifth wave of cases, most of them concentrated in sectors of the populations whose vaccination coverage is lower than the average. So, the initial scenario of vaccine prioritization has given way to a new one where achieving herd immunity is the primary concern. Using an age-structured vaccination model with waning immunity, we show that, under a limited supply of vaccines, a vaccination strategy based on minimizing the basic reproduction number allows for the deployment of a number of vaccine doses lower than the one required for maximizing the vaccination coverage. Such minimization is achieved by giving greater protection to those age groups that, for a given social contact pattern, have smaller fractions of susceptible individuals at the endemic equilibrium without vaccination, that is, to those groups that are more vulnerable to infection.


Assuntos
COVID-19/epidemiologia , Imunidade Coletiva , Modelos Imunológicos , SARS-CoV-2/imunologia , Vacinação , Adulto , Fatores Etários , Idoso , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/transmissão , Criança , Humanos
13.
Arterioscler Thromb Vasc Biol ; 42(3): 261-276, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35109674

RESUMO

Over the past 10 years, neutrophil extracellular traps (NETs) have become widely accepted as an integral player in immunothrombosis, due to their complex interplay with both pathogens and components of the coagulation system. While the release of NETs is an attempt by neutrophils to trap pathogens and constrain infections, NETs can have bystander effects on the host by inducing uncontrolled thrombosis, inflammation, and tissue damage. From an evolutionary perspective, pathogens have adapted to bypass the host innate immune response. Staphylococcus aureus (S. aureus), in particular, proficiently overcomes NET formation using several virulence factors. Here we review mechanisms of NET formation and how these are intertwined with platelet activation, the release of endothelial von Willebrand factor, and the activation of the coagulation system. We discuss the unique ability of S. aureus to modulate NET formation and alter released NETs, which helps S. aureus to escape from the host's defense mechanisms. We then discuss how platelets and the coagulation system could play a role in NET formation in S. aureus-induced infective endocarditis, and we explain how targeting these complex cellular interactions could reveal novel therapies to treat this disease and other immunothrombotic disorders.


Assuntos
Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/microbiologia , Staphylococcus aureus/patogenicidade , Tromboinflamação/etiologia , Animais , Fatores de Coagulação Sanguínea/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Evasão da Resposta Imune , Camundongos , Modelos Cardiovasculares , Modelos Imunológicos , Neutrófilos/imunologia , Neutrófilos/microbiologia , Ativação Plaquetária , Infecções Estafilocócicas/complicações , Staphylococcus aureus/imunologia , Tromboinflamação/imunologia , Tromboinflamação/microbiologia , Fatores de Virulência/imunologia , Fator de von Willebrand/imunologia
14.
mSphere ; 7(1): e0088321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107336

RESUMO

Considering the urgent demand for faster methods to quantify neutralizing antibody titers in patients with coronavirus (CoV) disease 2019 (COVID-19), developing an analytical model or method to replace the conventional virus neutralization test (NT) is essential. Moreover, a "COVID-19 immunity passport" is currently being proposed as a certification for people who travel internationally. Therefore, an enzyme-linked immunosorbent assay (ELISA) was designed to detect severe acute respiratory syndrome CoV 2 (SARS-CoV-2)-neutralizing antibodies in serum, which is based on the binding affinity of SARS-CoV-2 viral spike protein 1 (S1) and the viral spike protein receptor-binding domain (RBD) to antibodies. The RBD is considered the major binding region of neutralizing antibodies. Furthermore, S1 covers the RBD and several other regions, which are also important for neutralizing antibody binding. In this study, we assessed 144 clinical specimens, including those from patients with PCR-confirmed SARS-CoV-2 infections and healthy donors, using both the NT and ELISA. The ELISA results analyzed by spline regression and the two-variable generalized additive model precisely reflected the NT value, and the correlation between predicted and actual NT values was as high as 0.917. Therefore, our method serves as a surrogate to quantify neutralizing antibody titer. The analytic method and platform used in this study present a new perspective for serological testing of SARS-CoV-2 infection and have clinical potential to assess vaccine efficacy. IMPORTANCE Herein, we present a new approach for serological testing for SARS-CoV-2 antibodies using innovative laboratory methods that demonstrate a combination of biology and mathematics. The traditional virus neutralization test is the gold standard method; however, it is time-consuming and poses a risk to medical personnel. Thus, there is a demand for methods that rapidly quantify neutralizing antibody titers in patients with COVID-19 or examine vaccine efficacy at a biosafety level 2 containment facility. Therefore, we used a two-variable generalized additive model to analyze the results of the enzyme-linked immunosorbent assay and found the method to serve as a surrogate to quantify neutralizing antibody titers. This methodology has potential for clinical use in assessing vaccine efficacy.


Assuntos
Anticorpos Neutralizantes/sangue , COVID-19/imunologia , Ensaio de Imunoadsorção Enzimática , Modelos Imunológicos , Modelos Estatísticos , Testes de Neutralização/métodos , SARS-CoV-2/imunologia , Biomarcadores/sangue , COVID-19/sangue , COVID-19/diagnóstico , Estudos de Casos e Controles , Humanos , Análise de Regressão
15.
J Exp Med ; 219(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35195681

RESUMO

The gastrointestinal tract contains trillions of microorganisms that exist symbiotically with the host due to a tolerant, regulatory cell-rich intestinal immune system. However, this intimate relationship with the microbiome inevitably comes with risks, with intestinal organisms being the most common cause of bacteremia. The vasculature of the brain-lining meninges contains fenestrated endothelium, conferring vulnerability to invasion by circulating microbes. We propose that this has evolutionarily led to close links between gut and meningeal immunity, to prime the central nervous system defense against the most likely invaders. This paradigm is exemplified by the dural venous sinus IgA defense system, where the antibody repertoire mirrors that of the gut.


Assuntos
Trato Gastrointestinal/imunologia , Meninges/imunologia , Animais , Microbioma Gastrointestinal/imunologia , Humanos , Imunoglobulina A/imunologia , Meninges/microbiologia , Modelos Imunológicos , Plasmócitos/imunologia
16.
J Exp Med ; 219(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35195682

RESUMO

Leukocyte trafficking between blood and tissues is an essential function of the immune system that facilitates humoral and cellular immune responses. Within tissues, leukocytes perform surveillance and effector functions via cell motility and migration toward sites of tissue damage, infection, or inflammation. Neurotransmitters that are produced by the nervous system influence leukocyte trafficking around the body and the interstitial migration of immune cells in tissues. Neural regulation of leukocyte dynamics is influenced by circadian rhythms and altered by stress and disease. This review examines current knowledge of neuro-immune interactions that regulate leukocyte migration and consequences for protective immunity against infections and cancer.


Assuntos
Leucócitos/imunologia , Neuroimunomodulação/imunologia , Movimento Celular/imunologia , Quimiotaxia de Leucócito/imunologia , Ritmo Circadiano/imunologia , Humanos , Modelos Imunológicos , Modelos Neurológicos , Vias Neurais/imunologia , Sistema Nervoso Simpático/imunologia , Microambiente Tumoral/imunologia
17.
PLoS Pathog ; 18(1): e1010243, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100312

RESUMO

To assess the response to vaccination, quantity (concentration) and quality (avidity) of neutralizing antibodies are the most important parameters. Specifically, an increase in avidity indicates germinal center formation, which is required for establishing long-term protection. For influenza, the classical hemagglutination inhibition (HI) assay, however, quantifies a combination of both, and to separately determine avidity requires high experimental effort. We developed from first principles a biophysical model of hemagglutination inhibition to infer IgG antibody avidities from measured HI titers and IgG concentrations. The model accurately describes the relationship between neutralizing antibody concentration/avidity and HI titer, and explains quantitative aspects of the HI assay, such as robustness to pipetting errors and detection limit. We applied our model to infer avidities against the pandemic 2009 H1N1 influenza virus in vaccinated patients (n = 45) after hematopoietic stem cell transplantation (HSCT) and validated our results with independent avidity measurements using an enzyme-linked immunosorbent assay with urea elution. Avidities inferred by the model correlated with experimentally determined avidities (ρ = 0.54, 95% CI = [0.31, 0.70], P < 10-4). The model predicted that increases in IgG concentration mainly contribute to the observed HI titer increases in HSCT patients and that immunosuppressive treatment is associated with lower baseline avidities. Since our approach requires only easy-to-establish measurements as input, we anticipate that it will help to disentangle causes for poor vaccination outcomes also in larger patient populations. This study demonstrates that biophysical modelling can provide quantitative insights into agglutination assays and complement experimental measurements to refine antibody response analyses.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Afinidade de Anticorpos/imunologia , Imunogenicidade da Vacina/imunologia , Influenza Humana/imunologia , Modelos Imunológicos , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Humanos , Vírus da Influenza A Subtipo H1N1 , Testes de Neutralização
18.
Sci Rep ; 12(1): 1252, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075156

RESUMO

Hepatitis B virus (HBV) is a global health threat, and its elimination by 2030 has been prioritised by the World Health Organisation. Here we present an age-structured model for the immune response to an HBV infection, which takes into account contributions from both cell-mediated and humoral immunity. The model has been validated using published patient data recorded during acute infection. It has been adapted to the scenarios of chronic infection, clearance of infection, and flare-ups via variation of the immune response parameters. The impacts of immune response exhaustion and non-infectious subviral particles on the immune response dynamics are analysed. A comparison of different treatment options in the context of this model reveals that drugs targeting aspects of the viral life cycle are more effective than exhaustion therapy, a form of therapy mitigating immune response exhaustion. Our results suggest that antiviral treatment is best started when viral load is declining rather than in a flare-up. The model suggests that a fast antibody production rate always leads to viral clearance, highlighting the promise of antibody therapies currently in clinical trials.


Assuntos
Antivirais/uso terapêutico , Hepatite B Crônica/imunologia , Modelos Imunológicos , Adulto , Idoso , Feminino , Hepatite B Crônica/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Carga Viral
19.
EBioMedicine ; 75: 103809, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35033853

RESUMO

BACKGROUND: Mathematical modelling may aid in understanding the complex interactions between injury and immune response in critical illness. METHODS: We utilize a system biology model of COVID-19 to analyze the effect of altering baseline patient characteristics on the outcome of immunomodulatory therapies. We create example parameter sets meant to mimic diverse patient types. For each patient type, we define the optimal treatment, identify biologic programs responsible for clinical responses, and predict biomarkers of those programs. FINDINGS: Model states representing older and hyperinflamed patients respond better to immunomodulation than those representing obese and diabetic patients. The disparate clinical responses are driven by distinct biologic programs. Optimal treatment initiation time is determined by neutrophil recruitment, systemic cytokine expression, systemic microthrombosis and the renin-angiotensin system (RAS) in older patients, and by RAS, systemic microthrombosis and trans IL6 signalling for hyperinflamed patients. For older and hyperinflamed patients, IL6 modulating therapy is predicted to be optimal when initiated very early (<4th day of infection) and broad immunosuppression therapy (corticosteroids) is predicted to be optimally initiated later in the disease (7th - 9th day of infection). We show that markers of biologic programs identified by the model correspond to clinically identified markers of disease severity. INTERPRETATION: We demonstrate that modelling of COVID-19 pathobiology can suggest biomarkers that predict optimal response to a given immunomodulatory treatment. Mathematical modelling thus constitutes a novel adjunct to predictive enrichment and may aid in the reduction of heterogeneity in critical care trials. FUNDING: C.V. received a Marie Sklodowska Curie Actions Individual Fellowship (MSCA-IF-GF-2020-101028945). R.K.J.'s research is supported by R01-CA208205, and U01-CA 224348, R35-CA197743 and grants from the National Foundation for Cancer Research, Jane's Trust Foundation, Advanced Medical Research Foundation and Harvard Ludwig Cancer Center. No funder had a role in production or approval of this manuscript.


Assuntos
COVID-19/imunologia , Modelos Imunológicos , Síndrome do Desconforto Respiratório/imunologia , SARS-CoV-2/imunologia , Idoso , COVID-19/prevenção & controle , Ensaios Clínicos como Assunto , Feminino , Humanos , Masculino , Síndrome do Desconforto Respiratório/prevenção & controle
20.
J Am Soc Nephrol ; 33(2): 259-278, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34907031

RESUMO

Kidney disease is a known risk factor for poor outcomes of COVID-19 and many other serious infections. Conversely, infection is the second most common cause of death in patients with kidney disease. However, little is known about the underlying secondary immunodeficiency related to kidney disease (SIDKD). In contrast to cardiovascular disease related to kidney disease, which has triggered countless epidemiologic, clinical, and experimental research activities or interventional trials, investments in tracing, understanding, and therapeutically targeting SIDKD have been sparse. As a call for more awareness of SIDKD as an imminent unmet medical need that requires rigorous research activities at all levels, we review the epidemiology of SIDKD and the numerous aspects of the abnormal immunophenotype of patients with kidney disease. We propose a definition of SIDKD and discuss the pathogenic mechanisms of SIDKD known thus far, including more recent insights into the unexpected immunoregulatory roles of elevated levels of FGF23 and hyperuricemia and shifts in the secretome of the intestinal microbiota in kidney disease. As an ultimate goal, we should aim to develop therapeutics that can reduce mortality due to infections in patients with kidney disease by normalizing host defense to pathogens and immune responses to vaccines.


Assuntos
COVID-19/etiologia , Síndromes de Imunodeficiência/etiologia , Insuficiência Renal Crônica/complicações , Imunidade Adaptativa , Plaquetas/imunologia , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Microbioma Gastrointestinal/imunologia , Humanos , Imunidade Inata , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/prevenção & controle , Imunofenotipagem , Modelos Imunológicos , Pandemias , Insuficiência Renal Crônica/imunologia , Fatores de Risco , SARS-CoV-2 , Soroconversão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...